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Let T be a tree and consider the Randić indexχ(T ) = ∑
vi−vj

(1/
√

δ(vi )δ(vj ) ), where
vi–vj runs over all edges ofT andδ(vi ) denotes the degree of the vertexvi . Using counting
arguments we show that the Randić index, is monotone increasing over the well (lexicographic
order) ordered sequence of trees with unique branched vertex.
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1. Introduction and terminology

Molecular topology determines a large number of molecular properties, including
not only those depending on molecular size and shape such as boiling points, molecular
volume, solubilities, refractive indices, etc., but also the quantum mechanical character-
istics of molecules, such as energy levels, electronic populations, etc., which depends,
essentially, on the connectivity of the atoms [15].

Therefore, it would be of great interest to have a quantitative measure reflecting
the essential features of a given structure. Such measures are usually called topological
indices. These indices in some way reflect not only the size and shape of a molecule but
also their connectivity, i.e. the way their atoms are linked. Among the numerous topolog-
ical indices considered in chemical graph theory, only a few have been found noteworthy
in practical applications [12]. One of these is the connectivity or Randić indexχ , con-
ceived by Randíc to reflect the amount of branching present in a chemical species [14].
A complete list of scientific publications concerned with physical–chemical properties
and pharmacology applications ofχ includes several hundreds of papers, a few review
articles and two books [10,11].

Recently, some results about the mathematical properties ofχ have been pub-
lished [1,2,7–9,13]. In particular, in [5] the authors demostrated that amongn-vertex
trees, the path graph has maximalχ and Bollobás and Erdös [4] proved that among all
connected graphs, the star has minimal Randić-value.
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Let T be a tree with set of vertices{v1, . . . , vn}, the Randíc index ofT is defined
as

χ(T ) =
∑
vi−vj

1√
δ(vi)δ(vj )

,

wherevi–vj runs over all the edges ofT andδ(vi) denotes the degree of the vertexvi .
It is easy to see that forn > 3, χ(Sn) = √

n − 1 andχ(Pn) = (n − 3)/2 + √
2, where

Sn is the star andPn is the path ofn vertices. By our previous comments, we have the
following inequality:

χ(Sn) 6 χ(T ) 6 χ(Pn).

On the other hand, the adjacency matrix ofT is then ×n matrixA whose entriesaij are
given by

aij =
{

1 if vi andvj are adjacent
0 otherwise

and the characteristic polynomial ofA

det(λI − A) = λn + c1λ
n−1 + · · · + cn−1λ + cn,

wherec2r+1 = 0 for everyr ∈ N andc2 = −(n − 1) [3], is referred as the charac-
teristic polynomial ofT . The coefficients of this polynomial are used in [6] to give a
(lexicographic) well-order “6” over the set of all trees withn vertices as follows:

T = T ′ ⇐⇒ ci(T ) = ci

(
T ′) for all i

and

T < T ′ ⇐⇒ there existsr ∈ N such that
∣∣cr(T )

∣∣ <
∣∣cr

(
T ′)∣∣ and

ci(T ) = ci

(
T ′) for i < r.

It is well known that for every treeT with n vertices,Sn 6 T 6 Pn. So we have the
following correspondence:

Sn 6 T 6 Pnl l l
χ(Sn) 6 χ(T ) 6 χ(Pn)

A natural question arises:is χ monotone increasing over the well (lexicographic) or-
dered sequence of trees withn vertices? That is, if{Ti}k

i=1 is the sequence of all trees
with n vertices such that

Sn 6 T1 6 · · · 6 Tk 6 Pn,

then

χ(Sn) 6 χ(T1) 6 · · · 6 χ(Tk) 6 χ(Pn)?



O. Araujo, J. Rada / Randi´c index and lexicographic order 203

Figure 1.

Although this is true forn = 1, . . . , 7, in general, the answer is negative. For example,
in figure 1T < T ′ but χ(T ) = 5.5957> 5.5914= χ(T ′). However, as we shall see,
χ is increasing for certain classes of trees.

An i-vertex is a vertex of degreei, ki(T ) is the number ofi-verticesand for
i, j ∈ N, eij (T ) denotes the number of edges that joins ai-vertexwith aj -vertex.Finally,
we denote by[vi, vj ] the shortest walk joiningvi with vj and recall that the number of
edges in[vi, vj ] is called the distance inT betweenvi andvj and is denoted byd(vi, vj ).

We consider trees (withn vertices) which have exactly one branched vertex, that
is, a unique vertex of degree greater than 2. If this unique vertex has degreem, then, for
short, we say thatT is anm-tree. In theorems 2.2 and 2.4 we use counting arguments to
determine the coefficientsc4 andc6 of the characteristic polynomial of anm-treeT , in
terms of the degree structure ofT . It becomes clear from here that these coefficients de-
pends onn, m ande1m(T ). It turns out that the Randić index ofT can also be expressed in
terms of these numbers (theorem 3.1), allowing us to establish the relationship between
the coefficients of the characteristic polynomial and the Randić index of anm-tree.As a
consequence, we prove in theorem 3.4 thatχ is monotone increasing over the set of all
m-trees(2 6 m ∈ N) with a fixed number of vertices.

2. First coefficients of the characteristic polynomial associated to anm-tree

Given an integerm > 2, anm-treeT has the form presented in figure 2, wherev is
a vertex of degreem. Our first goal is to findc4(T ) andc6(T ) in terms of the degree
structure ofT . We need the following result [3, p. 49]:

Proposition 2.1. If T is a tree withn vertices then the odd coefficientsc2r+1(T ) are
zero, and the even coefficientsc2r(T ) are given by the rule that(−1)rc2r is the number
of ways of choosingr disjoint edges in the treeT .

An easy counting argument using this result shows that for every integerk > 1,
c4(Pk) = (k − 3)(k − 2)/2. Therefore, given anm-treeT as in figure 2, we can find the
number of ways of choosing two disjoint edges in each “maximal path”[vi, vj ]i<j . Note
that there are exactly(m−1)m/2 maximal paths. Now, if we take two disjoint edges inT

then there are two possibilities (see figure 3): the first, that the two edges are separated
by the vertexv. In this case, both edges only belong to the maximal path[vi, vj ]. The
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Figure 2.

Figure 3.

second possibility is, of course, that both edges are not separated byv. Hence, these two
edges belong to them − 1 maximal paths[vi, vj ]i 6=j∈{1,...,m}.

Theorem 2.2. If T is anm-tree withn vertices then

c4(T ) = 1

2

[
(n − 1)2 − 3(n − 1) + m(3 − m)

]
.

Proof. Setai = d(v, vi) for eachi = 1, . . . , m. Then by proposition 2.1 and the
previous observation we know that

c4(T ) =
∑
i<j

c4(Pai+aj +1) − (m − 2)

m∑
i=1

c4(Pai+1).
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Now, since for every integerk > 1, c4(Pk) = (k − 3)(k − 2)/2 and
∑m

i=1 ai = n − 1 it
follows

2c4(T ) = (m − 1)

m∑
i=1

a2
i + 2

∑
i<j

aiaj − 3(m − 1)

m∑
i=1

ai + (m − 1)(m − 2)

2
· 2

− (m − 2)

[
m∑

i=1

a2
i − 3

m∑
i=1

ai + 2m

]

=
m∑

i=1

a2
i + 2

∑
i<j

aiaj − 3
m∑

i=1

ai + m(3 − m)

=
(

m∑
i=1

ai

)2

− 3
m∑

i=1

ai + m(3 − m)

= (n − 1)2 − 3(n − 1) + m(3 − m). �

Corollary 2.3. If T andT ′ arem-treeswith n vertices thenc2(T ) = c2(T
′) andc4(T ) =

c4(T
′).

Proof. c2(T ) = c2(T
′) since both trees have the same number of vertices andc4(T ) =

c4(T
′) is immediate consequence of theorem 2.2. �

In order to findc6(T ) for anm-treeT as in figure 2, we need to count all possible
ways of choosing three disjoint edges inT . This can be done by fixing three disjoint
edges inT , then two situations can occur (see figure 4): (a) all three edges belong to a
same maximal path[vi, vj ] or (b) three disjoint edges do not belong to a same maximal
path.

Figure 4.
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Note that there are exactly∑
i<k

c6(Pai+ak+1) − (m − 2)

m∑
i=1

c6(Pai+1)

ways of choosing three disjoint edges in case (a) while in case (b), there are∑
i<k<l

(ai − 1)(ak − 1)(al − 1)

when we consider edges apart from the center vertexv and

(m − 2)
∑
i<k

(ai − 1)(ak − 1)

when one of the edges hasv as an endvertex.
Now, an easy application of proposition 2.1 shows that−6c6(Pk) = (k − 5)(k −

4)(k − 3) for k > 2, consequently we have the following result:

Theorem 2.4. If T is anm-treewith n vertices then

c6(T ) = −1

6
α + (m − 2)e1m(T ),

whereα is given by

α = n3 − 12n2 + [
47− 3(m − 2)2 − 3(m − 2)

]
n

+ 2(m − 2)3 + 21(m − 2)2 + 19(m − 2) − 60.

Proof. Setai = d(v, vi) for eachi = 1, . . . , m. Then by our previous comments

−c6(T ) =
∑
i<k

c6(Pai+ak+1) − (m − 2)

m∑
i=1

c6(Pai+1)

+
∑

i<k<l

(ai − 1)(ak − 1)(al − 1) + (m − 2)
∑
i<k

(ai − 1)(ak − 1).

Assume thatai = 1 for 1 6 i 6 j = e1m(T ).

−6
∑
i<k

c6(Pai+ak+1) = (m − 1)

m∑
i=j+1

a3
i + (m − 1)j + 3

∑
i<k

(
aia

2
k + a2

i ak

)
− 18

∑
i<k

aiak − 9(m − 1)

m∑
i=1

a2
i − 9(m − 1)j

+ 26(m − 1)

m∑
i=j+1

ai + 26(m − 1)j − 12m(m − 1),
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−6
m∑

i=1

c6(Pai+1) =
m∑

i=j+1

a3
i − 9

m∑
i=j+1

a2
i + 26

m∑
i=j+1

ai − 24(m − j),

∑
i<k<l

(ai − 1)(ak − 1)(al − 1) =
∑

j+16i<k<l

aiakal − (m − j − 2)
∑

j+16i<k

aiak

+ (m − j − 2)(m − j − 1)

2

m∑
i=j+1

ai

− 1

6
(m − j − 2)(m − j − 1)(m − j)

and∑
i<k

(ai − 1)(ak − 1) =
∑

j+16i<k

aiak − (m − j − 1)

m∑
i=j+1

ai + (m − j − 2)(m − j)

2
.

The result follows by replacing these equations in the first formula, grouping terms
in a convenient way and bearing in mind that

m∑
i=j+1

ai + j = n − 1. �

Corollary 2.5. If T andT ′ arem-treeswith n vertices then

c6(T ) − c6
(
T ′) = (m − 2)

(
e1m(T ) − e1m

(
T ′)).

Proof. By theorem 2.4,

c6(T ) = −1

6
α + (m − 2)e1m(T )

and

c6
(
T ′) = −1

6
α + (m − 2)e1m

(
T ′).

Hence,

c6(T ) − c6
(
T ′) = (m − 2)

(
e1m(T ) − e1m

(
T ′)). �

3. Randić index of anm-tree

Given anm-tree T , we can find the Randić index χ(T ) by looking at figure 5,
where the numbers next to the edges indicate the product of the degrees of the adjacent
vertices.
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Figure 5.

Theorem 3.1. If T is anm-treewith n vertices thenχ(T ) = λ − µe1m(T ), where

λ = m√
2

+ m√
2m

− m + 1

2
n − 1

2
and µ = 1√

2
+ 1√

2m
− 1√

m
− 1

2
.

Proof. Keeping the notation of figure 5, setai = d(v, vi) for i = 1, . . . , m. Note that
ai = 1 for i = 1, . . . , j = e1m(T ). Then

χ(T ) =
j∑

i=1

1√
m

+
m∑

i=j+1

(
1√
2

+ 1

2
(ai − 2) + 1√

2m

)

= 1√
m

j + (m − j)

(
1√
2

+ 1√
2m

− 1

)
+ 1

2
(n − j − 1)

=
(

m√
2

+ m√
2m

− m + 1

2
n − 1

2

)
−

(
1√
2

+ 1√
2m

− 1√
m

− 1

2

)
j

= λ − µe1m(T ). �

Corollary 3.2. If T andT ′arem-treeswith n vertices then

(1) χ(T ) = χ(T ′) ⇔ e1m(T ) = e1m(T ′), and

(2) χ(T ) > χ(T ′) ⇔ e1m(T ) < e1m(T ′).

Proof. It follows from theorem 3.1, sinceχ(T ) = λ−µe1m(T ), χ(T ′) = λ−µe1m(T ′)
and, clearly,µ > 0. �

Proposition 3.3. Let T andT ′ be m-treeswith n vertices. IfT 6 T ′ thenχ(T ) 6
χ(T ′).

Proof. By corollary 2.3,c2(T ) = c2(T
′) and c4(T ) = c4(T

′). If T 6 T ′ then we
have two possibilities: eitherc6(T ) = c6(T

′) or c6(T ) > c6(T
′). In the first case

it follows from corollary 2.5 thate1m(T ) = e1m(T ′). But then, by the first part of
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corollary 3.2,χ(T ) = χ(T ′). In the latter case, again by corollary 2.5,e1m(T ) >

e1m(T ′). Consequently, the second part of corollary 3.2 givesχ(T ) < χ(T ′). �

We denote by�n the set of allm-treeswith n vertices, varying 26 m ∈ N.

Theorem 3.4. The Randíc index is monotone increasing over�n.

Proof. Suppose thatT is an m-tree, T ′ is an m′-tree with n vertices andT 6 T ′.
Clearly,c2(T ) = c2(T

′) sinceT andT ′ have the same number of vertices. Sincec4(T ) 6
c4(T

′) then, by theorem 2.2,m > m′. Assume that

T1 6 T2 6 · · · 6 Tk

is the sequence (lexicographically ordered) of allm-treeswith n vertices, then, by propo-
sition 3.3, the Randić index of this sequence is monotone increasing with maximal
Randíc indexχ(Tk) = λ − µe1m(Tk). Hence,

χ(Tk) 6 λ = m√
2

+ m√
2m

− m + 1

2
n − 1

2
,

where equality holds if and only ife1m(Tk) = 0. Now, consider the sequence

U1 6 U2 6 · · · 6 Ul

of all m′-treeswith n vertices. Again, by proposition 3.3, the minimal value of the
Randíc index in this sequence is

χ(U1) = m′
√

2
+ m′

√
2m′ − m′ + 1

2
n − 1

2
−

(
1√
2

+ 1√
2m′ − 1√

m′ − 1

2

)(
m′ − 1

)
.

It is easy to check thatχ(U1) > λ. Consequently,χ(T ) 6 λ 6 χ(U1) 6 χ(T ′). �

Example 3.5. Table 1 shows allm-treeswith 9 vertices. The order in which these trees
appear is the lexicographic order. First of all we note that theχ-values are monotone
increasing as we should expect from theorem 3.4. Moreover, trees 9 and 10, or 14
and 15 or 16 and 17 have the same Randić index, this is a consequence of the first
part of corollary 3.2, since each of these pairs have the same number of edges joining
the 1-verticeswith the m-vertex. Also we observe that, for example, all 4-treeshave
the same coefficientc4, this fact can be deduced by corollary 2.3, and among these
trees, 9 and 10 have the same coefficientc6 which is perfectly reasonable since they
have the same number of edges joining the 1-verticeswith them-vertex(corollary 2.5).
Furthermore, we can predict by corollary 2.5 the difference from the coefficientc6 of
trees 8 and 12 by just looking at the figure:(4 − 2) · (3 − 0) = 6.
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Table 1



O. Araujo, J. Rada / Randi´c index and lexicographic order 211

Table 1
(Continued.)
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